121 research outputs found

    The 1st International Sport Science Symposium on "Active Life"

    Get PDF

    Study on the training of multi-limb coordination (preliminary experiment)

    Get PDF

    Coordinative control of posture and movement of tuck jump

    Get PDF

    Factors that produce the functional coupling between hand and foot

    Get PDF

    Modulation of Corticospinal Excitability during Acquisition of Action Sequences by Observation

    Get PDF
    Excitability of the corticospinal pathway increases during observation of an action. However, how corticospinal excitability changes during observation of sequential actions in the course of acquiring novel skills (observational learning) remains unexplored. To investigate this, we used a previously unpracticed sequence of ten hand postures. Participants were asked to repeat observation and replication of the sequence. This block of observation and replication was repeated 5 times. During observation of a given hand posture (OK sign), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation were recorded from hand muscles. In experiment 1, the OK sign appeared in the 9th position of the sequence. Almost all participants could replicate the OK sign only at the 5th block of the experiment. MEP amplitude was greater than that in the control, and decreased with the stages. This suggested that during observational learning of sequential hand postures MEP changed with the progress of the learning. To evaluate this idea, we performed two additional experiments. In experiment 2, the OK sign appeared in the 2nd position. Almost all participants replicated the OK sign even in the 1st block. The MEP amplitude did not change across stages. In experiment 3, the OK sign appeared in the 9th position, but the order of other signs was randomized in every stage. Many participants were not able to replicate the OK sign even during the 5th block of the experiment. The MEP amplitude did not change across stages. These results suggest that: (1) During observational learning modulation of corticospinal excitability is associated with the learning process. (2) Corticospinal excitability decreases as learning progresses

    The effect of contact sport expertise on postural control

    Get PDF
    It has been demonstrated that expertise in sport influences standing balance ability. However, little is known concerning how physical contact in sport affects balance ability. The aim of this study was to examine whether differences between contact and limited-contact sport experiences results in differences in postural control. Twenty male collegiate athletes (10 soccer/contact, 10 baseball/limited contact) and ten male untrained students stood quietly on a force plate under various bipedal and unipedal conditions, with and without vision. Significant differences for sway area and COP speed were found between the soccer players and the other two groups for unipedal stances without vision. Soccer players were found to have superior postural control compared with participants involved in limited contact sport or no sport at all. Contact sports may lead to increased postural control through enhanced use of proprioceptive and vestibular information

    Corticospinal excitability modulation in resting digit muscles during cyclical movement of the digits of the ipsilateral limb

    Get PDF
    We investigated how corticospinal excitability of the resting digit muscles was modulated by the digit movement in the ipsilateral limb. Subjects performed cyclical extension-flexion movements of either the right toes or fingers. To determine whether corticospinal excitability of the resting digit muscles was modulated on the basis of movement direction or action coupling between ipsilateral digits, the right forearm was maintained in either the pronated or supinated position. During the movement, the motor evoked potential (MEP) elicited by transcranial magnetic stimulation was measured from either the resting right finger extensor and flexor, or toe extensor and flexor. For both finger and toe muscles, independent of forearm position, MEP amplitude of the flexor was greater during ipsilateral digit flexion as compared to extension, and MEP amplitude of the extensor was greater during ipsilateral digit extension as compared to flexion. An exception was that MEP amplitude of the toe flexor with the supinated forearm did not differ between during finger extension and flexion. These findings suggest that digit movement modulates corticospinal excitability of the digits of the ipsilateral limb such that the same action is preferred. Our results provide evidence for a better understanding of neural interactions between ipsilateral limbs, and may thus contribute to neurorehabilitation after a stroke or incomplete spinal cord injury

    Remote effect of muscle relaxation

    Get PDF

    BASEBALL SPIN AND PITCHERS’ PERFORMANCE

    Get PDF
    The motion of the ball thrown by a pitcher is influenced by three forces: gravity, drag force due to air resistance, and lift force which deflects a ball vertically or laterally due to ball spin. The lift force acting on the ball increases with spin rate and movement speed when the spin axis of the ball is orthogonal to the direction of ball movement. Among individual pitchers there were great variations in spin on their fastballs, both in spin rate and in direction of the spin axis. Ball spin rate was positively correlated with increases in distance from the optimal contact point of the swung bat (sweet spot) to the actual point of contact. That is, batters tend to hit under the ball when it has a high spin rate, even for balls of the same velocity. Abnormal or unique ball spin is an important aspect of superior performance for pitchers

    Analysis of sprint ability in elementary school children

    Get PDF
    corecore